Title
Jacobi polynomials from compatibility conditions
Abbreviated Journal Title
Proc. Amer. Math. Soc.
Keywords
ORTHOGONAL POLYNOMIALS; FREUD POLYNOMIALS; Mathematics, Applied; Mathematics
Abstract
We revisit the ladder operators for orthogonal polynomials and re-interpret two supplementary conditions as compatibility conditions of two linear over-determined systems; one involves the variation of the polynomials with respect to the variable z ( spectral parameter) and the other a recurrence relation in n ( the lattice variable). For the Jacobi weight w(x) = (1-x)(alpha) (1+x)beta, x is an element of [-1, 1], we show how to use the compatibility conditions to explicitly determine the recurrence coefficients of the monic Jacobi polynomials.
Journal Title
Proceedings of the American Mathematical Society
Volume
133
Issue/Number
2
Publication Date
1-1-2005
Document Type
Article
Language
English
First Page
465
Last Page
472
WOS Identifier
ISSN
0002-9939
Recommended Citation
"Jacobi polynomials from compatibility conditions" (2005). Faculty Bibliography 2000s. 5062.
https://stars.library.ucf.edu/facultybib2000/5062
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu