Title
Frequency modulation spectroscopy in a particle-forming environment for the detection of SiH2
Abbreviated Journal Title
Proc. Combust. Inst.
Keywords
laser absorption; FM spectroscopy; shock tube; silane; shock wave; LASER-ABSORPTION; SHOCK-TUBE; NH2; RADICALS; Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, ; Mechanical
Abstract
Frequency modulation (FM) spectroscopy using a tunable ring-dye laser has been demonstrated on the SiH2 reaction intermediate in a shock tube. The silylene radical is a critical species for the study of silane chemistry, the flame synthesis of materials, and the chemical vapor deposition of silicon. However, the detection of SiH2 using laser absorption techniques is complicated by the presence of condensing particles that are present in the flow fields of interest. In the present application of FM spectroscopy, the modulation frequency is higher than normally employed, allowing one sideband to be well off the peak, despite the broad lineshape of the (r)Q(0,4)(4) line in the (A) over tilde-(X) over tilde (0, 2, 0)-(0, 0, 0) band. A calibration method has been developed to directly obtain the absolute absorption for individual time histories, independent of normal drift in the FM signal level. In addition to increasing sensitivity, the FM approach has eliminated signal contributions from particle formation that could previously dominate the long-time profile. Due to a dramatic reduction of beam-steering effects, the temporal resolution near time zero has been increased. Silylene absorption traces were obtained from SiH4 and Si2H6 mixtures highly diluted in argon and reflected-shock heated to temperatures between 1070 and 1610 K. Minimum detection sensitivities well below 0.05% absorption were demonstrated, corresponding to < 0.1 ppm SiH2. The results show that kinetic-rate and lineshape-model revisions are necessary to fit the data. (c) 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Journal Title
Proceedings of the Combustion Institute
Volume
30
Publication Date
1-1-2005
Document Type
Article; Proceedings Paper
Language
English
First Page
1583
Last Page
1589
WOS Identifier
ISSN
0082-0784
Recommended Citation
"Frequency modulation spectroscopy in a particle-forming environment for the detection of SiH2" (2005). Faculty Bibliography 2000s. 5092.
https://stars.library.ucf.edu/facultybib2000/5092
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu