Title

OBPC Symposium: Maize 2004 & Beyond - Recent advances in chloroplast genetic engineering

Authors

Authors

V. Koya;H. Daniell

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

In Vitro Cell. Dev. Biol.-Plant

Keywords

chloroplast-derived agronomic traits; chloroplast-derived therapeutic; proteins; maternal inheritance; non-green plastids; plastid; transformation; transgene containment; TRANSGENIC TOBACCO CHLOROPLASTS; ISOLATED CUCUMBER ETIOPLASTS; ENHANCED; DISEASE RESISTANCE; GLYCINE BETAINE SYNTHESIS; HUMAN SERUM-ALBUMIN; PLASTID TRANSFORMATION; ARABIDOPSIS-THALIANA; CHOLINE MONOOXYGENASE; CONFERS RESISTANCE; BIOLISTIC DELIVERY; Plant Sciences; Cell Biology; Developmental Biology

Abstract

The chloroplast genetic engineering approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering in a single transformation event, transgene containment via maternal inheritance, lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. Thus far, more than 40 transgenes have been stably integrated and expressed via the tobacco chloroplast genome to confer several agronomic traits and produce vaccine antigens, industrially valuable enzymes, biomaterials, and amino acids. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins have been demonstrated by in vitro assays and animal studies. Oral delivery of vaccine antigens has been facilitated by hyperexpression in transgenic chloroplasts (leaves) or non-green plastids (carrots) and the availability of antibiotic-free selectable markers or the ability to excise selectable marker genes. Additionally, the presence of chaperones and enzymes within the chloroplast help to assemble complex multi-subunit proteins and correctly fold proteins containing disulfide bonds, thereby drastically reducing the costs of in vitro processing. Despite such significant progress in chloroplast transformation, this technology has not been extended to major crops. This obstacle emphasizes the need for plastid genome sequencing to increase the efficiency of transformation and conduct basic research in plastid biogenesis and function. However, highly efficient soybean, carrot, and cotton plastid transformation has been recently accomplished via somatic embryogenesis using species-specific chloroplast vectors. Recent advancements facilitate our understanding of plastid biochemistry and molecular biology. This review focuses on exciting recent developments in this field and offers directions for further research and development.

Journal Title

In Vitro Cellular & Developmental Biology-Plant

Volume

41

Issue/Number

4

Publication Date

1-1-2005

Document Type

Article; Proceedings Paper

Language

English

First Page

388

Last Page

404

WOS Identifier

WOS:000231708100007

ISSN

1054-5476

Share

COinS