Title
Design of "Personalized" Classifier Using Soft Computing Techniques for "Personalized" Facial Expression Recognition
Abbreviated Journal Title
IEEE Trans. Fuzzy Syst.
Keywords
Facial expression recognition; feature selection (FS); model; building/modification (MBM); personalization; soft computing technique; FEATURE-SELECTION; NEURAL-NETWORKS; EMOTION; Computer Science, Artificial Intelligence; Engineering, Electrical &; Electronic
Abstract
We propose a design method of personalized classifier with soft computing techniques for automatic facial expression recognition. Motivated by the fact that even though human facial expressions of emotion are often ambiguous and inconsistent, humans are, in general, very good at classifying such complex images. In consideration of individual characteristics, we adopt a similar strategy of building a personalized classifier to enhance the recognition performance. For realization, we use a soft computing technique of neurofuzzy approach. Specifically, two core steps-"model building/modification" and "feature selection"-are applied to build a "personalized" classification structure. The proposed scheme of classifier construction achieves a higher classification rate, minimal network parameters, easy-to-extend structure, and faster computation time, among others. Four sets of facial expression data are chosen and image features are extracted from each of them to show effectiveness of the proposed method, which confirms considerable enhancement of the whole performance.
Journal Title
Ieee Transactions on Fuzzy Systems
Volume
16
Issue/Number
4
Publication Date
1-1-2008
Document Type
Article
Language
English
First Page
874
Last Page
885
WOS Identifier
ISSN
1063-6706
Recommended Citation
"Design of "Personalized" Classifier Using Soft Computing Techniques for "Personalized" Facial Expression Recognition" (2008). Faculty Bibliography 2000s. 543.
https://stars.library.ucf.edu/facultybib2000/543
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu