Title
An inverse boundary element method/genetic algorithm based approach for retrieval of multi-dimensional heat transfer coefficients within film cooling holes/slots
Abbreviated Journal Title
Inverse Probl. Sci. Eng.
Keywords
POSED PROBLEMS; L-CURVE; CYLINDER; Engineering, Multidisciplinary; Mathematics, Interdisciplinary; Applications
Abstract
An inverse methodology is developed as a means of determining heat transfer coefficient distributions in film cooling holes/slots. Thermal conditions are over-specified at exposed surfaces amenable to measurement, while the temperature and surface heat flux distributions are unknown at the film cooling hole/slot walls. The latter are determined in an iterative manner by solving an inverse problem whose objective is to adjust the film-cooling hole/slot wall temperatures and heat flux distributions until the temperature and heat fluxes at the measurement surfaces are matched in an overall heat conduction solution. The heat conduction problem is solved using boundary element methods, and the inverse problem is solved Using a genetic algorithm. The resulting film coefficient distributions are Fit to a correlation reflecting dependency on position, the Prandtl and Reynolds numbers.
Journal Title
Inverse Problems in Science and Engineering
Volume
13
Issue/Number
1
Publication Date
1-1-2005
Document Type
Article
Language
English
First Page
79
Last Page
98
WOS Identifier
ISSN
1741-5977
Recommended Citation
"An inverse boundary element method/genetic algorithm based approach for retrieval of multi-dimensional heat transfer coefficients within film cooling holes/slots" (2005). Faculty Bibliography 2000s. 5676.
https://stars.library.ucf.edu/facultybib2000/5676
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu