Title

Analysis of red light running crashes based on quasi-induced exposure and multiple logistic regression method

Authors

Authors

X. D. Yan; E. Radwan; E. Birriel;Trb

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Keywords

SAFETY; PREVALENCE; Engineering, Civil; Mathematics, Interdisciplinary Applications; Transportation Science & Technology

Abstract

According to recent national statistics, red light running crashes represent a significant safety problem at signalized intersections. To examine the overall characteristics of red light running crashes, this study used the 1999 to 2001 Florida crash database to investigate the crash propensity related to traffic environments, driver characteristics, and vehicle types. The quasi-induced exposure concept and multiple logistic regression technique were used to perform this analysis. The results showed that traffic factors including number of lanes, crash time, weather, highway character, day of week, urban or rural location, speed limit, driver age, alcohol or drug use, physical defect, driver residence, and vehicle type were significantly associated with the risk of red light running crashes. Furthermore, it confirmed that there were significant interaction effects between the risk factors, including crash time and highway character, number of lanes and urban or rural location, weather condition and driver age, driver age and gender, alcohol or drug use and gender, and type of vehicle and gender.

Journal Title

Statistical Methods; Highway Safety Data, Analysis, and Evaluation; Occupant Protection; Systematic Reviews and Meta-Analysis

Issue/Number

1908

Publication Date

1-1-2005

Document Type

Article

Language

English

First Page

70

Last Page

79

WOS Identifier

WOS:000234682300009

ISSN

0361-1981; 0-309-09380-5

Share

COinS