Title
Nonlinear dynamics of polar-orthotropic circular plates
Abbreviated Journal Title
Int. J. Struct. Stab. Dyn.
Keywords
polar orthotropic; nonlinear vibrations; thin plate; ELASTIC-FOUNDATION; VIBRATIONS; Engineering, Civil; Engineering, Mechanical; Mechanics
Abstract
The dynamics of nonlinear polar orthotropic circular plates with simply supported boundary condition axe investigated. Kirchhoff strain displacement relations for thin plates plus next higher-order nonlinear terms (von Karman type geometric nonlinearity) are considered. Lagrangian density function and Hamilton's principle are utilized to derive Lagrange's equations, from which the equations of motion and associated bounda.ry conditions are derived. Analytical solution is obtained by the perturbation techniques and numerical solution by the Runge-Kutta method. Phase diagrams, discrete Fast Fourier Transform (FFT diagrams) and time history responses axe presented for studying the forced vibration behavior. The sub-harmonic and primary resonances are studied as well as the effect of adding damping foil layers. The quadratic term in the governing equation plays a softening role on the overall behavior of the plate due to its relatively large coefficient. The increase of damping tends to smooth out the unstable region (i.e. jump phenomenon) in the system.
Journal Title
International Journal of Structural Stability and Dynamics
Volume
6
Issue/Number
2
Publication Date
1-1-2006
Document Type
Article
Language
English
First Page
253
Last Page
268
WOS Identifier
ISSN
0219-4554
Recommended Citation
"Nonlinear dynamics of polar-orthotropic circular plates" (2006). Faculty Bibliography 2000s. 5886.
https://stars.library.ucf.edu/facultybib2000/5886
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu