Title

A defined system to allow skeletal muscle differentiation and subsequent integration with silicon microstructures

Authors

Authors

M. Das; C. A. Gregory; P. Molnar; L. M. Riedel; K. Wilson;J. J. Hickman

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Biomaterials

Keywords

hybrid devices; defined system; serum-free; myotubes; MEMS; NERVE GROWTH-FACTOR; HIPPOCAMPAL-NEURONS; NEUROTROPHIC FACTOR; CELL-ADHESION; IN-VITRO; PROLIFERATION; SURVIVAL; CULTURE; SURFACE; CARDIOTROPHIN-1; Engineering, Biomedical; Materials Science, Biomaterials

Abstract

This work documents the development of an in vitro cell culture model consisting of a novel serum-free medium and a non-biological growth substrate, N-1[3 (trimethoxysilyl) propyl] diethylenetriamine (DETA), to enable functional myotube integration with cantilevers fabricated using MEMS technology. This newly developed, defined in vitro model was used to study the differentiation of fetal rat skeletal muscle and it promoted the formation of myotubes from the dissociated rat fetal muscle cells. The myotubes were characterized by morphological analysis, immunocytochemistry and electrophysiology. Further, it was demonstrated that when the dissociated muscle cells were plated on fabricated microcantilevers, the muscle cells aligned along the major axis of the cantilever and formed robust myotubes. This novel system could not only find applications in skeletal muscle differentiation and biocompatibility studies but also in bioartificial muscle engineering, hybrid actuation system development, biorobotics and for a better understanding of myopathies and neuromuscular disorders. (c) 2006 Elsevier Ltd. All rights reserved.

Journal Title

Biomaterials

Volume

27

Issue/Number

24

Publication Date

1-1-2006

Document Type

Article

Language

English

First Page

4374

Last Page

4380

WOS Identifier

WOS:000238241100011

ISSN

0142-9612

Share

COinS