Title
Trees for correlated survival data by goodness of split, with applications to tooth prognosis
Abbreviated Journal Title
J. Am. Stat. Assoc.
Keywords
classification rule; correlated survival data; regression tree; robust; logrank statistic; survival analysis; tooth loss; FAILURE TIME DATA; CLINICAL-PARAMETERS; REGRESSION-ANALYSIS; RANK; STATISTICS; MODELS; IDENTIFICATION; Statistics & Probability
Abstract
In this article the regression tree method is extended to correlated survival data and applied to the problem of developing objective prognostic classification rules in periodontal research. The robust logrank statistic is used as the splitting statistic to measure the between-node difference in survival, while adjusting for correlation among failure times from the same patient. The partition-based survival function estimator is shown to converge to the true conditional survival function. Tooth loss data from 100 periodontal patients (2,509 teeth) was analyzed using the proposed method. The goal is to assign each tooth to one of the five prognosis categories (good, fair, poor, questionable, or hopeless). After the best-sized tree was identified, an amalgamation procedure was used to form five prognostic groups. The prognostic rules established here may be used by periodontists, general dentists, and insurance companies in devising appropriate treatment plans for periodontal patients.
Journal Title
Journal of the American Statistical Association
Volume
101
Issue/Number
475
Publication Date
1-1-2006
Document Type
Article
Language
English
First Page
959
Last Page
967
WOS Identifier
ISSN
0162-1459
Recommended Citation
"Trees for correlated survival data by goodness of split, with applications to tooth prognosis" (2006). Faculty Bibliography 2000s. 6120.
https://stars.library.ucf.edu/facultybib2000/6120
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu