Title
Wave and defect dynamics in nonlinear photonic quasicrystals
Abbreviated Journal Title
Nature
Keywords
SOLITONS; LATTICES; DISLOCATIONS; PHASONS; ARRAYS; Multidisciplinary Sciences
Abstract
Quasicrystals are unique structures with long-range order but no periodicity. Their properties have intrigued scientists ever since their discovery(1) and initial theoretical analysis(2,3). The lack of periodicity excludes the possibility of describing quasicrystal structures with well-established analytical tools, including common notions like Brillouin zones and Bloch's theorem. New and unique features such as fractal-like band structures(4-7) and 'phason' degrees of freedom(8) are introduced. In general, it is very difficult to directly observe the evolution of electronic waves in solid-state atomic quasicrystals, or the dynamics of the structure itself. Here we use optical induction(9-11) to create two-dimensional photonic quasicrystals, whose macroscopic nature allows us to explore wave transport phenomena. We demonstrate that light launched at different quasicrystal sites travels through the lattice in a way equivalent to quantum tunnelling of electrons in a quasiperiodic potential. At high intensity, lattice solitons are formed. Finally, we directly observe dislocation dynamics when crystal sites are allowed to interact with each other. Our experimental results apply not only to photonics, but also to other quasiperiodic systems such as matter waves in quasiperiodic traps(12), generic pattern-forming systems as in parametrically excited surface waves(13), liquid quasicrystals(14), and the more familiar atomic quasicrystals.
Journal Title
Nature
Volume
440
Issue/Number
7088
Publication Date
1-1-2006
Document Type
Article
Language
English
First Page
1166
Last Page
1169
WOS Identifier
ISSN
0028-0836
Recommended Citation
"Wave and defect dynamics in nonlinear photonic quasicrystals" (2006). Faculty Bibliography 2000s. 6142.
https://stars.library.ucf.edu/facultybib2000/6142
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu