Title
Structural remodeling of nucleus ambiguus projections to cardiac ganglia following chronic intermittent hypoxia in C57BL/6J mice
Abbreviated Journal Title
J. Comp. Neurol.
Keywords
baroreflex; parasympathetic; vagal; cardiac ganglia; heart; intermittent; hypoxia; sleep apnea; SYMPATHETIC NEUROAXONAL DYSTROPHY; DORSAL MOTOR NUCLEUS; PARASYMPATHETIC; CONTROL; BAROREFLEX SENSITIVITY; FISCHER-344 RATS; MYENTERIC PLEXUS; NEURONAL LOSS; MITRAL-VALVE; SLEEP-APNEA; AGE; Neurosciences; Zoology
Abstract
The baroreflex control of heart rate (HR) is reduced following chronic intermittent hypoxia (CIH). Since the nucleus ambiguus (NA) plays a key role in baroreflex control of HR, we examined whether CIH remodels vagal efferent projections to cardiac ganglia. C57BL/6J mice (3-4 months of age) were exposed to either room air (RA) or CIH for 3 months. Confocal microscopy was used to examine NA axons and terminals in cardiac ganglia following Fluoro-Gold (FG) injections to label cardiac ganglia, and microinjections of tracer DiI into the left NA to anterogradely label vagal efferents. We found that: 1) Cardiac ganglia were widely distributed on the dorsal surface of the atria. Although the total number of cardiac ganglia did not differ between RA and CIH mice, the size of ganglia and the somatic area of cardiac principal neurons (PNs) were significantly decreased (P < 0.01), and the size of the PN nuclei was increased following CIH (P < 0.01). 2) NA axons entered cardiac ganglia and innervated PNs with dense basket endings in both RA and CIH mice, and the percentage of innervated PNs was similar (RA: 50 +/- 1.0%; CIH: 49 +/- 1.0%; P > 0.10). In CIH mice, however, swollen cardiac axons and terminals without close contacts to PNs were found. Furthermore, varicose endings around PNs appeared swollen and the axonal varicose area around PNs was almost doubled in size (CIH: 163.1 +/- 6.4 mu m(2); RA: 88 +/- 3.9 mu m(2), p < 0.01). Thus, CIH significantly altered the structure of cardiac ganglia and resulted in reorganized vagal efferent projections to cardiac ganglia. Such remodeling of cardiac ganglia and vagal efferent projections provides new insight into the effects of CIH on the brain-heart circuitry of C57BL/6J mice.
Journal Title
Journal of Comparative Neurology
Volume
509
Issue/Number
1
Publication Date
1-1-2008
Document Type
Article
DOI Link
Language
English
First Page
103
Last Page
117
WOS Identifier
ISSN
0021-9967
Recommended Citation
"Structural remodeling of nucleus ambiguus projections to cardiac ganglia following chronic intermittent hypoxia in C57BL/6J mice" (2008). Faculty Bibliography 2000s. 625.
https://stars.library.ucf.edu/facultybib2000/625
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu