Authors

T. Ruhlman; S. B. Lee; R. K. Jansen; J. B. Hostetler; L. J. Tallon; C. D. Town;H. Daniell

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

BMC Genomics

Keywords

COMPLETE NUCLEOTIDE-SEQUENCE; TOXIN B-SUBUNIT; DEPENDENT; DIABETES-MELLITUS; CHLOROPLAST GENOME; BASAL ANGIOSPERM; TRANSGENIC; PLANTS; CHOLERA-TOXIN; NEUTRALIZING IMMUNOGENICITY; STABLE; TRANSFORMATION; STRUCTURAL FEATURES; Biotechnology & Applied Microbiology; Genetics & Heredity

Abstract

Background: Carrot ( Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. Results: The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats > = 30 bp with a sequence identity > = 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony ( MP) and maximum likelihood ( ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. Conclusion: The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support ( 100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements.

Journal Title

Bmc Genomics

Volume

7

Publication Date

1-1-2006

Document Type

Article

Language

English

First Page

13

WOS Identifier

WOS:000240844000001

ISSN

1471-2164

Share

COinS