Title
Constructing Near-Perfect Phylogenies with multiple homoplasy events
Abbreviated Journal Title
Bioinformatics
Keywords
SAMPLES; Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical &; Computational Biology; Statistics & Probability
Abstract
Motivation: We explore the problem of constructing near-perfect phylogenies on bi-allelic haplotypes, where the deviation from perfect phylogeny is entirely due to homoplasy events. We present polynomial-time algorithms for restricted versions of the problem. We show that these algorithms can be extended to genotype data, in which case the problem is called the near-perfect phylogeny haplotyping ( NPPH) problem. We present a near-optimal algorithm for the H1-NPPH problem, which is to determine if a given set of genotypes admit a phylogeny with a single homoplasy event. The time-complexity of our algorithm for the H1-NPPH problem is O(m(2)(n + m)), where n is the number of genotypes and m is the number of SNP sites. This is a significant improvement over the earlier O( n 4) algorithm. We also introduce generalized versions of the problem. The H(1, q)-NPPH problem is to determine if a given set of genotypes admit a phylogeny with q homoplasy events, so that all the homoplasy events occur in a single site. We present an O(m(q+1)(n + m)) algorithm for the H(1, q)-NPPH problem. Results: We present results on simulated data, which demonstrate that the accuracyof our algorithm for theH1-NPPHproblemiscomparableto that of the existing methods, while being orders of magnitude faster. Availability: The implementation of our algorithm for the H1-NPPH problem is available upon request.
Journal Title
Bioinformatics
Volume
22
Issue/Number
14
Publication Date
1-1-2006
Document Type
Article; Proceedings Paper
Language
English
First Page
E514
Last Page
E522
WOS Identifier
ISSN
1367-4803
Recommended Citation
"Constructing Near-Perfect Phylogenies with multiple homoplasy events" (2006). Faculty Bibliography 2000s. 6546.
https://stars.library.ucf.edu/facultybib2000/6546
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu