Title

Comparison between EVM and RSM turbulence models in predicting flow and heat transfer in rib-roughened channels

Authors

Authors

A. K. Sleiti;J. S. Kapat

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Turbul.

Keywords

2ND-MOMENT CLOSURE; ANGLED RIBS; FRICTION; PASSAGES; PROGRESS; DUCT; Mechanics; Physics, Fluids & Plasmas

Abstract

A 3D analysis of two-equation eddy viscosity (EVMs) and Reynolds stress (RSM) turbulence models and their application to solve flow and heat transfer in rotating rib-roughened internal cooling channels is the main focus of this study. The flow in these channels is affected by ribs, rotation, buoyancy, bends and boundary conditions. The EVMs considered are the standard k - epsilon model of Launder and Spalding [ 1], the renormalization group k - epsilon model of Yakhot and Orszag [ 2], the realizable k - epsilon model of Shih et al. [ 3], the standard k -omega model of Wilcox [ 4] and the shear - stress transport ( SST) k -omega model of Menter [ 5]. The viscosity-affected near-wall region is resolved by enhanced near-wall treatment using combined two-layer model with enhanced wall functions. The results for both stationary and rotating channels showed the advantages of Reynolds stress model ( RSM), Gibson and Launder [ 6], Launder [ 7] and Launder et al. [ 8] in predicting the flow field and heat transfer compared to two-equation EVMs that need corrections to account for streamline curvature, buoyancy and rotation.

Journal Title

Journal of Turbulence

Volume

7

Issue/Number

29

Publication Date

1-1-2006

Document Type

Article

Language

English

First Page

1

Last Page

21

WOS Identifier

WOS:000236763200001

ISSN

1468-5248

Share

COinS