Title
Step-down FDR procedures for large numbers of hypotheses
Keywords
FALSE DISCOVERY RATE; MULTIPLE; Computer Science, Theory & Methods
Abstract
Somerville (2004b) developed FDR step-down procedures which were particularly appropriate for cases where the number of false hypotheses was small. The test statistics were assumed to have a niultivariate-t distribution with common correlation. MCV's (minimum critical values) were chosen so that 8 unique critical values resulted. Tables were given for numbers of hypotheses in, ranging from 50 to 10,000, for rho = 0., 0.5, and nu = 1.5, infinity. In this paper we extend the results, using MCV's resulting in 31 critical values. Tables are given for the same values of m, for rho = 0: 0.1, 0.5 and nu = 15, infinity. Interpolation rules are given for m, rho and nu. Use of larger numbers of critical values increase both the power and the number of hypotheses falsely rejected. When the expected number of false hypotheses is small, use of the procedures of this paper results in a reduced number of false rejections with a negligible reduction in power.
Journal Title
Applied Parallel Computing: State of the Art in Scientific Computing
Volume
3732
Publication Date
1-1-2006
Document Type
Article
Language
English
First Page
949
Last Page
956
WOS Identifier
ISSN
0302-9743; 3-540-29067-2
Recommended Citation
"Step-down FDR procedures for large numbers of hypotheses" (2006). Faculty Bibliography 2000s. 6608.
https://stars.library.ucf.edu/facultybib2000/6608
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu