Title
On the long-time limit of semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrodinger equation: Pure radiation case
Abbreviated Journal Title
Commun. Pure Appl. Math.
Keywords
ASYMPTOTICS; Mathematics, Applied; Mathematics
Abstract
In a previous paper [13] we calculated the leading-order term q(0)(x, t, epsilon) of the solution of q (x, t, epsilon), the focusing nonlinear (cubic) Schrodinger (NLS) equation in the semiclassical limit (epsilon - > 0) for a certain one-parameter family of initial conditions. This family contains both solitons and pure radiation. In the pure radiation case, our result is valid for all times t > = 0. The aim of the present paper is to calculate the long-term behavior of the semiclassical solution q(x, t, epsilon) in. the pure radiation case. As before, our main tool is the Riemann-Hilbert problem (RHP) formulation of the inverse scattering problem and the corresponding system of "moment and integral conditions," known also as a system of "modulation equations." (c) 2006 Wiley Periodicals, Inc.
Journal Title
Communications on Pure and Applied Mathematics
Volume
59
Issue/Number
10
Publication Date
1-1-2006
Document Type
Article
DOI Link
Language
English
First Page
1379
Last Page
1432
WOS Identifier
ISSN
0010-3640
Recommended Citation
"On the long-time limit of semiclassical (zero dispersion limit) solutions of the focusing nonlinear Schrodinger equation: Pure radiation case" (2006). Faculty Bibliography 2000s. 6654.
https://stars.library.ucf.edu/facultybib2000/6654
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu