Title

Object tracking: A survey

Authors

Authors

A. Yilmaz; O. Javed;M. Shah

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

ACM Comput. Surv.

Keywords

algorithms; appearance models; contour evolution; feature selection; object detection; object representation; point tracking; shape tracking; REAL-TIME TRACKING; HUMAN MOTION; IMAGE SEGMENTATION; VISUAL TRACKING; HYPOTHESIS TRACKING; APPEARANCE MODELS; TARGET TRACKING; ACTIVE; CONTOURS; MOVING-OBJECTS; OPTICAL-FLOW; Computer Science, Theory & Methods

Abstract

The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.

Journal Title

Acm Computing Surveys

Volume

38

Issue/Number

4

Publication Date

1-1-2006

Document Type

Review

Language

English

First Page

45

WOS Identifier

WOS:000243147900003

ISSN

0360-0300

Share

COinS