Title
The impact of temperature and gas-phase oxygen on kinetics of in situ ammonia removal in bioreactor landfill leachate
Abbreviated Journal Title
Water Res.
Keywords
bioreactor landfill; aerobic; ammonia; nitrification; denitrification; DISSOLVED-OXYGEN; NITRIFICATION KINETICS; NITROGEN MANAGEMENT; ACTIVATED-SLUDGE; BIOFILTERS; WASTE; Engineering, Environmental; Environmental Sciences; Water Resources
Abstract
Microcosm experiments aimed at defining a rate equation that describes how different environmental conditions (i.e., gas-phase oxygen concentrations, temperature and ammonia concentration) may impact in situ ammonia removal were conducted. Results indicate that ammonia removal can readily occur at various gas-phase oxygen levels (between 0.7% and 100%) and over a range of temperatures (22, 35 and 45 degrees C). Slowest rates occurred with lower gas-phase oxygen concentrations. All rate data, except at 45 degrees C and 5% oxygen, fit well (r(2) = 0.75) to a multiplicative Monod equation with terms describing the impact of oxygen, pH, temperature and ammonia concentration. All ammonia half-saturation values are relatively high when compared to those generally found in wastewater treatment, suggesting that the rate may be affected by the mass transfer of oxygen and/or ammonia. Additionally, as the temperature increases, the ammonia half-saturation value also increases. The multiplicative Monod model developed can be used to aid in designing and operating field-scale studies. (c) 2007 Elsevier Ltd. All rights reserved.
Journal Title
Water Research
Volume
41
Issue/Number
9
Publication Date
1-1-2007
Document Type
Article
Language
English
First Page
1907
Last Page
1914
WOS Identifier
ISSN
0043-1354
Recommended Citation
"The impact of temperature and gas-phase oxygen on kinetics of in situ ammonia removal in bioreactor landfill leachate" (2007). Faculty Bibliography 2000s. 6864.
https://stars.library.ucf.edu/facultybib2000/6864
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu