Title
Mean-centering does not alleviate collinearity problems in moderated multiple regression models
Abbreviated Journal Title
Mark. Sci.
Keywords
moderated regression; mean-centering; collinearity; EMPIRICAL GENERALIZATIONS; VARIABLES; Business
Abstract
The cross-product term in moderated regression may be collinear with its constituent parts, making it difficult to detect main, simple, and interaction effects. The literature shows that mean-centering can reduce the covariance between the linear and the interaction terms, thereby suggesting that it reduces collinearity. We analytically prove that mean-centering neither changes the computational precision of parameters, the sampling accuracy of main effects, simple effects, interaction effects, nor the R-2. We also show that the determinants of the cross product matrix X ' X are identical for uncentered and mean-centered data, so the collinearity problem in the moderated regression is unchanged by mean-centering. Many empirical marketing researchers commonly mean-center their moderated regression data hoping that this will improve the precision of estimates from ill conditioned collinear data, but unfortunately, this hope is futile. Therefore, researchers using moderated regression models should not mean-center in a specious attempt to mitigate collinearity between the linear and the interaction terms. Of course, researchers may wish to mean-center for interpretive purposes and other reasons.
Journal Title
Marketing Science
Volume
26
Issue/Number
3
Publication Date
1-1-2007
Document Type
Article
Language
English
First Page
438
Last Page
445
WOS Identifier
ISSN
0732-2399
Recommended Citation
"Mean-centering does not alleviate collinearity problems in moderated multiple regression models" (2007). Faculty Bibliography 2000s. 7089.
https://stars.library.ucf.edu/facultybib2000/7089
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu