Title
Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization
Abbreviated Journal Title
Mater. Sci. Eng. C-Biomimetic Supramol. Syst.
Keywords
nanostructured bioceramics; nanocrystalline hydroxyapatite; nano-powder; sol-gel; calcium phosphate; biomaterial; GLASS-REINFORCED HYDROXYAPATITE; MECHANICAL-PROPERTIES; LOW-TEMPERATURE; CERAMICS; POWDERS; COMPOSITES; STRENGTH; BIOCERAMICS; PARTICLES; ADDITIVES; Materials Science, Multidisciplinary
Abstract
During recent years, there have been efforts in developing nanocrystalline bioceramics, to enhance their mechanical and biological properties for use in tissue engineering applications. In this research, we made an attempt to synthesize nanocrystalline bioactive hydroxyapatite (Ca-10(PO4)(6) (OH)(2), HAp) ceramic powder in the lower-end of nano-range (2-10 mn), using a simple low-temperature sol-gel technique and studied its densification behavior. We further studied the effects of metal ion dopants during synthesis on powder morphology, and the properties of the sintered structures. Calcium nitrate and triethyl phosphite were used as precursors for calcium and phosphorous, respectively, for sol-gel synthesis. Calculated quantities of magnesium oxide and zinc oxide were incorporated as dopants into amorphous dried powder, prior to calcination at 250-550 degrees C. The synthesized powders were analyzed for their phases using X-ray diffraction technique and characterized for powder morphology and particle size using transmission electron microscopy (TEM). TEM analysis showed that the average particle size of the synthesized powders were in the range of 2-10 nm. The synthesized nano-powders were uniaxially compacted and then sintered at 1250 degrees C and 1300 degrees C for 6 h, separately, in air. A maximum average sintered density of 3.29 g/cm(3) was achieved in structures sintered at 1300 degrees C, developed from nano-powder doped with magnesium. Vickers hardness testing was performed to determine the hardness of the sintered structures. Uniaxial compression tests were performed to evaluate the mechanical properties. Bioactivity and biodegradation behavior of the sintered structures were assessed in simulated body fluid (SBF) and maintained in a dynamic state. (C) 2006 Elsevier B.V. All rights reserved.
Journal Title
Materials Science & Engineering C-Biomimetic and Supramolecular Systems
Volume
27
Issue/Number
4
Publication Date
1-1-2007
Document Type
Article
Language
English
First Page
837
Last Page
848
WOS Identifier
ISSN
0928-4931
Recommended Citation
"Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization" (2007). Faculty Bibliography 2000s. 7278.
https://stars.library.ucf.edu/facultybib2000/7278
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu