Title
Disorder-quenched Kondo effect in mesoscopic electronic systems
Abbreviated Journal Title
Phys. Rev. B
Keywords
FERMI-LIQUID BEHAVIOR; WEAK-LOCALIZATION; MAGNETIC-MOMENTS; ALLOYS; TEMPERATURE; STATISTICS; SCATTERING; CROSSOVER; WIRES; METAL; Physics, Condensed Matter
Abstract
Nonmagnetic disorder is shown to quench the screening of magnetic moments in metals-the Kondo effect. The probability that a magnetic moment remains free down to zero temperature is found to increase with disorder strength. Experimental consequences for disordered metals are studied. In particular, it is shown that the presence of magnetic impurities with a small Kondo temperature enhances the electron's dephasing rate at low temperatures in comparison to the clean metal case. It is, furthermore, proven that the width of the distribution of Kondo temperatures remains finite in the thermodynamic (infinite volume) limit due to wave-function correlations within an energy interval of order 1/tau, where tau is the elastic scattering time. When time-reversal symmetry is broken either by applying a magnetic field or by increasing the concentration of magnetic impurities, the distribution of Kondo temperatures becomes narrower.
Journal Title
Physical Review B
Volume
75
Issue/Number
18
Publication Date
1-1-2007
Document Type
Article
Language
English
First Page
17
WOS Identifier
ISSN
1098-0121
Recommended Citation
"Disorder-quenched Kondo effect in mesoscopic electronic systems" (2007). Faculty Bibliography 2000s. 7295.
https://stars.library.ucf.edu/facultybib2000/7295
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu