Title
Phase-field simulation of interdiffusion microstructure containing fcc-gamma and L1(2)-gamma ' phases in Ni-Al diffusion couples
Abbreviated Journal Title
Comput. Mater. Sci.
Keywords
nickel alloys; interdiffusion; microstructure; phase-field model; COMPUTER-SIMULATION; ELECTRON-MICROSCOPY; COARSENING KINETICS; SINGLE-PHASE; ALLOYS; NI3AL; PARTICLES; INTERFACE; COATINGS; Materials Science, Multidisciplinary
Abstract
Evolution of interdiffusion microstructures was examined for binary Ni-Al solid-to-solid diffusion couples using two-dimensional (2D) phase-field simulation. Utilizing semi-implicit Fourier-spectral solutions to Cahn-Hilliard and Allen-Cahn equations, multiphase diffusion couples of fee Ni solid solution gamma vs. L1(2) Ni3Al solid solution gamma', gamma vs. gamma + gamma', gamma + gamma' vs. gamma + gamma' with sufficient thermodynamic and kinetic database, were simulated with alloys of varying compositions and volume fractions of second phase (e.g., gamma' Chemical mobility as a function of composition was used in the study with constant gradient energy coefficient, and their effect on the final interdiffusion microstructure was examined. The microstructures were characterized by the type of boundaries formed, i.e. Type 0, Type I, and Type II, following various experimental observations in literature and thermodynamic considerations. Volume fraction profiles of alloy phases present in the diffusion couples were measured to quantitatively analyze the formation or dissolution of phases across the boundaries. Kinetics of dissolution of gamma' phase was found to be a function of interdiffusion coefficients that can vary with composition and temperature. (C) 2007 Elsevier B.V. All rights reserved.
Journal Title
Computational Materials Science
Volume
43
Issue/Number
2
Publication Date
1-1-2008
Document Type
Article
Language
English
First Page
301
Last Page
308
WOS Identifier
ISSN
0927-0256
Recommended Citation
"Phase-field simulation of interdiffusion microstructure containing fcc-gamma and L1(2)-gamma ' phases in Ni-Al diffusion couples" (2008). Faculty Bibliography 2000s. 735.
https://stars.library.ucf.edu/facultybib2000/735
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu