Title
A novel variational approach to pulsating solitons in the cubic-quintic Ginzburg-Landau equation
Abbreviated Journal Title
Theor. Math. Phys.
Keywords
variational formalism; complex Ginzburg-Landau equation; pulsating; soliton; MODULATED AMPLITUDE WAVES; TIME-PERIODIC SOLUTIONS; DISSIPATIVE SYSTEMS; INSTABILITIES; FRONTS; PULSES; SINKS; Physics, Multidisciplinary; Physics, Mathematical
Abstract
Comprehensive numerical simulations of pulse solutions of the cubic-quintic Ginzburg-Landau equation (CGLE) reveal various intriguing and entirely novel classes of solutions. In particular, there are five new classes of pulse or solitary wave solutions, i.e., pulsating, creeping, snake, erupting, and chaotic solitons that are not stationary in time. They are spatially confined pulse-type structures whose envelopes exhibit complicated temporal dynamics. The numerical simulations also reveal very interesting bifurcation sequences of these pulses as the CGLE parameters are varied. We address the issues of central interest in this area, i.e., the conditions for the occurrence of the five categories of dissipative solitons and also the dependence of both their shape and their stability on the various CGLE parameters, i.e., the nonlinearity, dispersion, linear and nonlinear gain, loss, and spectral filtering. Our predictions for the variation of the soliton amplitudes, widths, and periods with the CGLE parameters agree with the simulation results. We here present detailed results for the pulsating solitary waves. Their regimes of occurrence, bifurcations, and the parameter dependences of the amplitudes, widths, and periods agree with the simulation results. We will address snakes and chaotic solitons in subsequent papers. This overall approach fails to address only the dissipative solitons in one class, i.e., the exploding or erupting solitons.
Journal Title
Theoretical and Mathematical Physics
Volume
152
Issue/Number
2
Publication Date
1-1-2007
Document Type
Article; Proceedings Paper
Language
English
First Page
1160
Last Page
1172
WOS Identifier
ISSN
0040-5779
Recommended Citation
"A novel variational approach to pulsating solitons in the cubic-quintic Ginzburg-Landau equation" (2007). Faculty Bibliography 2000s. 7398.
https://stars.library.ucf.edu/facultybib2000/7398
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu