Title
Rigorous electromagnetic analysis of volumetrically complex media using the slice absorption method
Abbreviated Journal Title
J. Opt. Soc. Am. A-Opt. Image Sci. Vis.
Keywords
PHOTONIC BAND STRUCTURES; COUPLED-WAVE ANALYSIS; EFFICIENT; IMPLEMENTATION; HOLOGRAPHIC LITHOGRAPHY; PERIODIC STRUCTURES; MAXWELLS; EQUATIONS; NEAR-FIELD; GRATINGS; FABRICATION; CRYSTALS; Optics
Abstract
There is tremendous demand for numerical methods to perform rigorous analysis of devices that are both large scale and complex throughout their volume. This can arise when devices must be considered with realistic geometry or when they contain artificial materials such as photonic crystals, left-handed materials, nanoparticles, or other metamaterials. The slice absorption method (SAM) was developed to address this need. The method is fully numerical and able to break large problems down into small pieces, or slices, using matrix division or Gaussian elimination instead of eigensystern computations and scattering matrix manipulations. In these regards, the SAM is an attractive alternative to popular techniques like the finite-difference time domain method, rigorous coupled-wave analysis, and the transfer matrix method. To demonstrate the utility of the SAM and benchmark its accuracy, reflection was simulated for a photonic crystal fabricated in SU-8 by multiphoton direct laser writing. Realistic geometry was incorporated into the model by simulating the microfabrication. process, which yielded simulation results that matched experimental measurements remarkably well. (c) 2007 Optical Society of America.
Journal Title
Journal of the Optical Society of America a-Optics Image Science and Vision
Volume
24
Issue/Number
10
Publication Date
1-1-2007
Document Type
Article
Language
English
First Page
3123
Last Page
3134
WOS Identifier
ISSN
1084-7529
Recommended Citation
"Rigorous electromagnetic analysis of volumetrically complex media using the slice absorption method" (2007). Faculty Bibliography 2000s. 7592.
https://stars.library.ucf.edu/facultybib2000/7592
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu