Title

Solving inverse heat conduction problems using trained POD-RBF network inverse method

Authors

Authors

Z. Ostrowski; R. A. Bialecki;A. J. Kassab

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Inverse Probl. Sci. Eng.

Keywords

inverse problems; regularization; heat conduction; proper orthogonal; decomposition; PROPER ORTHOGONAL DECOMPOSITION; FLOWS; Engineering, Multidisciplinary; Mathematics, Interdisciplinary; Applications

Abstract

The article presents advances in the approach aiming to solve inverse problems of steady state and transient heat conduction. The regularization of ill-posed problem comes from the proper orthogonal decomposition (POD). The idea is to expand the direct problem solution into a sequence of orthonormal basis vectors, describing the most significant features of spatial and time variation of the temperature field. Due to the optimality of proposed expansion, the majority of the basis vectors can be discarded practically without accuracy loss. The amplitudes of this low-order expansion are expressed as a linear combination of radial basis functions (RBF) depending on both retrieved parameters and time. This approximation, further referred as trained POD-RBF network is then used to retrieve the sought-for parameters. This is done by resorting to least square fit of the network and measurements. Numerical examples show the robustness and numerical stability of the scheme.

Journal Title

Inverse Problems in Science and Engineering

Volume

16

Issue/Number

1

Publication Date

1-1-2008

Document Type

Article; Proceedings Paper

Language

English

First Page

39

Last Page

54

WOS Identifier

WOS:000252959000004

ISSN

1741-5977

Share

COinS