Title
Solving inverse heat conduction problems using trained POD-RBF network inverse method
Abbreviated Journal Title
Inverse Probl. Sci. Eng.
Keywords
inverse problems; regularization; heat conduction; proper orthogonal; decomposition; PROPER ORTHOGONAL DECOMPOSITION; FLOWS; Engineering, Multidisciplinary; Mathematics, Interdisciplinary; Applications
Abstract
The article presents advances in the approach aiming to solve inverse problems of steady state and transient heat conduction. The regularization of ill-posed problem comes from the proper orthogonal decomposition (POD). The idea is to expand the direct problem solution into a sequence of orthonormal basis vectors, describing the most significant features of spatial and time variation of the temperature field. Due to the optimality of proposed expansion, the majority of the basis vectors can be discarded practically without accuracy loss. The amplitudes of this low-order expansion are expressed as a linear combination of radial basis functions (RBF) depending on both retrieved parameters and time. This approximation, further referred as trained POD-RBF network is then used to retrieve the sought-for parameters. This is done by resorting to least square fit of the network and measurements. Numerical examples show the robustness and numerical stability of the scheme.
Journal Title
Inverse Problems in Science and Engineering
Volume
16
Issue/Number
1
Publication Date
1-1-2008
Document Type
Article; Proceedings Paper
Language
English
First Page
39
Last Page
54
WOS Identifier
ISSN
1741-5977
Recommended Citation
"Solving inverse heat conduction problems using trained POD-RBF network inverse method" (2008). Faculty Bibliography 2000s. 800.
https://stars.library.ucf.edu/facultybib2000/800
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu