Title
Two-dimensional, unstructured mesh generation for tidal models
Abbreviated Journal Title
Int. J. Numer. Methods Fluids
Keywords
localized truncation error analysis; shallow-water flow; tidal model; grid generation; SHALLOW-WATER EQUATIONS; BOUNDARY-CONDITIONS; ELEMENT; PROGRESS; GRIDS; Computer Science, Interdisciplinary Applications; Mathematics, ; Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas
Abstract
The successful implementation of a finite element model for computing shallow-water flow requires the identification and spatial discretization of a surface water region. Since no robust criterion or node spacing routine exists, which incorporates physical characteristics and subsequent responses into the mesh generation process, modelers are left to rely on crude gridding criteria as well as their knowledge of particular domains and their intuition. Two separate methods to generate a finite element mesh are compared for the Gulf of Mexico. A wavelength-based criterion and an alternative approach, which employs a localized truncation error analysis (LTEA), are presented. Both meshes have roughly the same number of nodes, although the distribution of these nodes is very different. Two-dimensional depth-averaged simulations of now using a linearized form of the generalized wave continuity equation and momentum equations are performed with the LTEA-based mesh and the wavelength-to-gridsize ratio mesh. All simulations are forced with a single tidal constituent, M-2. Use of the LTEA-based procedure is shown to produce a superior (i.e., less error) two-dimensional grid because the physics of shallow-water flow, as represented by discrete equations, are incorporated into the mesh generation process. Copyright (C) 2001 John Wiley & Sons, Ltd.
Journal Title
International Journal for Numerical Methods in Fluids
Volume
35
Issue/Number
6
Publication Date
1-1-2001
Document Type
Article
Language
English
First Page
669
Last Page
686
WOS Identifier
ISSN
0271-2091
Recommended Citation
"Two-dimensional, unstructured mesh generation for tidal models" (2001). Faculty Bibliography 2000s. 8016.
https://stars.library.ucf.edu/facultybib2000/8016
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu