Title

Cooperative control of dynamical systems with application to autonomous vehicles

Authors

Authors

Z. H. Qu; J. Wang;R. A. Hull

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

IEEE Trans. Autom. Control

Keywords

consensus; cooperative control; cooperative controllability; formation; control; high-order dynamical systems; matrix theory; networked systems; time-varying sensing/communication; INTERCONNECTED SYSTEMS; MULTIAGENT SYSTEMS; STABILITY; AGENTS; COMMUNICATION; STRATEGIES; Automation & Control Systems; Engineering, Electrical & Electronic

Abstract

In this paper, a new framework based on matrix theory is proposed to analyze and design cooperative controls for a group of individual dynamical systems whose outputs are sensed by or communicated to others in an intermittent, dynamically changing, and local manner. In the framework, sensing/communication is described mathematically by a time-varying matrix whose dimension is equal to the number of dynamical systems in the group and whose elements assume piecewise-constant and binary values. Dynamical systems are generally heterogeneous and can be transformed into a canonical form of different, arbitrary, but finite relative degrees. Utilizing a set of new results on augmentation of irreducible matrices and on lower triangulation of reducible matrices, the framework allows a designer to study how a general local-and-output-feedback cooperative control can determine group behaviors of the dynamical systems and to see how changes, of sensing/communication would impact the group behaviors over time. A necessary and sufficient condition on convergence of a multiplicative sequence of reducible row-stochastic (diagonally positive) matrices is explicitly derived, and through simple choices of a gain matrix in the cooperative control law, the overall closed-loop system is shown to exhibit cooperative behaviors (such as single group behavior, multiple group behaviors, adaptive cooperative behavior for the group, and cooperative formation including individual behaviors). Examples, including formation control of nonholonomic systems in the chained form, are used to illustrate the proposed framework.

Journal Title

Ieee Transactions on Automatic Control

Volume

53

Issue/Number

4

Publication Date

1-1-2008

Document Type

Article

Language

English

First Page

894

Last Page

911

WOS Identifier

WOS:000256965900003

ISSN

0018-9286

Share

COinS