Title
Quantum interference of tunnel trajectories between states of different spin length in a dimeric molecular nanomagnet
Abbreviated Journal Title
Nat. Phys.
Keywords
WHEEL-SHAPED MN-12; MAGNET MN-12-ACETATE; MAGNETIZATION; COHERENCE; DYNAMICS; Physics, Multidisciplinary
Abstract
Tunable electron spins in solid media are among the most promising candidates for qubits(1). In this context, molecular nanomagnets have been proposed as hardware for quantum computation(2). The flexibility in their synthesis represents a distinct advantage over other spin systems, enabling the systematic production of samples with desirable properties, for example, with a view to implementing quantum logic gates(3,4). Here, we report the observation of quantum interference associated with tunnelling trajectories between states of different total spin length in a dimeric molecular nanomagnet. We argue that the interference is a consequence of the unique characteristics of a molecular Mn-12 wheel, which behaves as a molecular dimer with weak ferromagnetic exchange coupling: each half of the molecule acts as a single-molecule magnet, whereas the weak coupling between the two halves gives rise to an extra internal spin degree of freedom within the molecule - that is, its total spin may fluctuate. More importantly, the observation of quantum interference provides clear evidence for quantum-mechanical superpositions involving entangled states shared between both halves of the wheel.
Journal Title
Nature Physics
Volume
4
Issue/Number
4
Publication Date
1-1-2008
Document Type
Article
DOI Link
Language
English
First Page
277
Last Page
281
WOS Identifier
ISSN
1745-2473
Recommended Citation
"Quantum interference of tunnel trajectories between states of different spin length in a dimeric molecular nanomagnet" (2008). Faculty Bibliography 2000s. 867.
https://stars.library.ucf.edu/facultybib2000/867
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu