Title
Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system
Abbreviated Journal Title
Biomaterials
Keywords
Stem cell; Co-culture; In vitro; Nerve tissue engineering; Skeletal; muscle; In vitro test; RAT SPINAL-CORD; INNERVATED HUMAN MUSCLE; IN-VITRO; MOTOR-NEURONS; DIRECTED DIFFERENTIATION; FUNCTIONAL MOTONEURONS; SYNAPSE FORMATION; DRUG DISCOVERY; NERVE; CULTURE; Engineering, Biomedical; Materials Science, Biomaterials
Abstract
Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time-lapse recordings and their subsequent quenching by D-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair. (C) 2011 Elsevier Ltd. All rights reserved.
Journal Title
Biomaterials
Volume
32
Issue/Number
36
Publication Date
1-1-2011
Document Type
Article
Language
English
First Page
9602
Last Page
9611
WOS Identifier
ISSN
0142-9612
Recommended Citation
"Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system" (2011). Faculty Bibliography 2010s. 1338.
https://stars.library.ucf.edu/facultybib2010/1338
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu