Authors

V. Guttal; F. Bartumeus; G. Hartvigsen;A. L. Nevai

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

PLoS One

Keywords

PLANT MIGRATION RATES; SEED DISPERSAL; PATTERNS; BEHAVIOR; MODELS; WIND; FRUGIVORE; MOVEMENT; TAIL; DETERMINANTS; Multidisciplinary Sciences

Abstract

Long-distance dispersal (LDD) events, although rare for most plant species, can strongly influence population and community dynamics. Animals function as a key biotic vector of seeds and thus, a mechanistic and quantitative understanding of how individual animal behaviors scale to dispersal patterns at different spatial scales is a question of critical importance from both basic and applied perspectives. Using a diffusion-theory based analytical approach for a wide range of animal movement and seed transportation patterns, we show that the scale (a measure of local dispersal) of the seed dispersal kernel increases with the organisms' rate of movement and mean seed retention time. We reveal that variations in seed retention time is a key determinant of various measures of LDD such as kurtosis (or shape) of the kernel, thinkness of tails and the absolute number of seeds falling beyond a threshold distance. Using empirical data sets of frugivores, we illustrate the importance of variability in retention times for predicting the key disperser species that influence LDD. Our study makes testable predictions linking animal movement behaviors and gut retention times to dispersal patterns and, more generally, highlights the potential importance of animal behavioral variability for the LDD of seeds.

Journal Title

Plos One

Volume

6

Issue/Number

12

Publication Date

1-1-2011

Document Type

Article

Language

English

First Page

10

WOS Identifier

WOS:000298369100040

ISSN

1932-6203

Share

COinS