Abbreviated Journal Title
SIAM J. Appl. Math.
Keywords
traveling fronts; propagation failure; inhomogeneities; bistable; equation; MULTIPLE IMPULSE SOLUTIONS; TRAVELING-WAVE SOLUTIONS; DISCRETE NAGUMO; EQUATION; NERVE EQUATION; STATIONARY FRONTS; MCKEAN CARICATURE; EXCITABLE MEDIA; PROPAGATION; STABILITY; LATTICE; Mathematics, Applied
Abstract
We consider a bistable differential-difference equation with inhomogeneous diffusion. Employing a piecewise linear nonlinearity, often referred to as McKean's caricature of the cubic, we construct front solutions which correspond, in the case of homogeneous diffusion, to monotone traveling front solutions or, in the case of propagation failure, to stationary front solutions. A general form for these fronts is given for essentially arbitrary inhomogeneous discrete diffusion, and conditions are given for the existence of solutions to the original discrete Nagumo equation. The specific case of one defect is considered in depth, giving a complete understanding of propagation failure and a grasp on changes in wave speed. Insight into the dynamic behavior of these front solutions as a function of the magnitude and relative position of the defects is obtained with the assistance of numerical results.
Journal Title
Siam Journal on Applied Mathematics
Volume
71
Issue/Number
4
Publication Date
1-1-2011
Document Type
Article
DOI Link
Language
English
First Page
1374
Last Page
1400
WOS Identifier
ISSN
0036-1399
Recommended Citation
Humphries, A. R.; Moore, Brian E.; and Van Vleck, Erik S., "Front Solutions for Bistable Differential-Difference Equations with Inhomogeneous Diffusion" (2011). Faculty Bibliography 2010s. 1410.
https://stars.library.ucf.edu/facultybib2010/1410
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu