Title

Potential annealing treatments for tailoring the starting microstructure of low-enriched U-Mo dispersion fuels to optimize performance during irradiation

Authors

Authors

D. D. Keiser; J. F. Jue; N. E. Woolstenhulme;A. Ewh

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Nucl. Mater.

Keywords

DEGREES-C; ALLOY; INTERDIFFUSION; Materials Science, Multidisciplinary; Nuclear Science & Technology; Mining & Mineral Processing

Abstract

Low-enriched uranium-molybdenum (U-Mo) alloy particles dispersed in aluminum alloy (e.g., dispersion fuels) are being developed for application in research and test reactors. To achieve the best performance of these fuels during irradiation, optimization of the starting microstructure may be required by utilizing a heat treatment that results in the formation of uniform, Si-rich interaction layers between the U-Mo particles and Al-Si matrix. These layers behave in a stable manner under certain irradiation conditions. To identify the optimum heat treatment for producing these kinds of layers in a dispersion fuel plate, a systematic annealing study has been performed using actual dispersion fuel samples, which were fabricated at relatively low temperatures to limit the growth of any interaction layers in the samples prior to controlled heat treatment. These samples had different Al matrices with varying Si contents and were annealed between 450 and 525 degrees C for up to 4 h. The samples were then characterized using scanning electron microscopy (SEM) to examine the thickness, composition, and uniformity of the interaction layers. Image analysis was performed to quantify various attributes of the dispersion fuel microstructures that related to the development of the interaction layers. The most uniform layers were observed to form in fuel samples that had an Al matrix with at least 4 wt.% Si and a heat treatment temperature of at least 475 degrees C. (C) 2011 Elsevier B.V. All rights reserved.

Journal Title

Journal of Nuclear Materials

Volume

419

Issue/Number

1-3

Publication Date

1-1-2011

Document Type

Article

Language

English

First Page

226

Last Page

234

WOS Identifier

WOS:000298936600028

ISSN

0022-3115

Share

COinS