Title

Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles

Authors

Authors

A. Krywonos; J. E. Harvey;N. Choi

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

J. Opt. Soc. Am. A-Opt. Image Sci. Vis.

Keywords

SCALAR DIFFRACTION THEORY; FUNDAMENTAL QUANTITY; OPTICAL-COMPONENTS; RADIANCE FUNCTION; LIGHT-SCATTERING; KIRCHHOFF MODEL; REFLECTANCE; PERFORMANCE; Optics

Abstract

Scattering effects from microtopographic surface roughness are merely nonparaxial diffraction phenomena resulting from random phase variations in the reflected or transmitted wavefront. Rayleigh-Rice, Beckmann-Kirchhoff. or Harvey-Shack surface scatter theories are commonly used to predict surface scatter effects. Smooth-surface and/or paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. A recent linear systems formulation of nonparaxial scalar diffraction theory applied to surface scatter phenomena resulted first in an empirically modified Beckmann-Kirchhoff surface scatter model, then a generalized Harvey-Shack theory that produces accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattered angles than the classical Beckmann-Kirchhoff and the original Harvey-Shack theories. These new developments simplify the analysis and understanding of nonintuitive scattering behavior from rough surfaces illuminated at arbitrary incident angles. (C) 2011 Optical Society of America

Journal Title

Journal of the Optical Society of America a-Optics Image Science and Vision

Volume

28

Issue/Number

6

Publication Date

1-1-2011

Document Type

Article

Language

English

First Page

1121

Last Page

1138

WOS Identifier

WOS:000291303700021

ISSN

1084-7529

Share

COinS