Title
Self-Starting Multivariate Control Charts for Location and Scale
Abbreviated Journal Title
J. Qual. Technol.
Keywords
Average Run Length (ARL); Cholesky Decomposition; Multistandardization; Recursive Residual; Regression Adjustment; INDIVIDUAL OBSERVATIONS; PARAMETERS; T-2; Engineering, Industrial; Operations Research & Management Science; Statistics & Probability
Abstract
Multivariate control charts are advisable when monitoring several correlated characteristics. The multivariate exponentially weighted moving average (MEWMA) is ideal for monitoring the mean vector, and the multivariate exponentially weighted moving covariance matrix (MEWMC) detects changes in the covariance matrix. Both charts were established under the assumption that the parameters are known a priori. This is seldom the case, and Phase I data sets are commonly used to estimate the chart's in-control parameter values. Plugging in parameter estimates, however, fundamentally changes the run-length distribution from those assumed in the known-parameter theory and diminishes chart performance, even for large calibration samples. Self-starting methods, which correctly studentize the incoming stream of process readings, provide exact control right from start up. We extend the existing multivariate self-starting methodology to a combination chart for both the mean vector and the covariance matrix. This approach is shown to have good performance.
Journal Title
Journal of Quality Technology
Volume
43
Issue/Number
2
Publication Date
1-1-2011
Document Type
Article
Language
English
First Page
113
Last Page
126
WOS Identifier
ISSN
0022-4065
Recommended Citation
"Self-Starting Multivariate Control Charts for Location and Scale" (2011). Faculty Bibliography 2010s. 1607.
https://stars.library.ucf.edu/facultybib2010/1607
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu