Title
DFT Study of Ligand Binding to Small Gold Clusters
Abbreviated Journal Title
J. Phys. Chem. Lett.
Keywords
DENSITY-FUNCTIONAL THEORY; EFFECTIVE CORE POTENTIALS; ZETA-VALENCE; QUALITY; GAUSSIAN-BASIS SETS; THEORETICAL CHEMISTRY; ELECTRONIC-STRUCTURE; AB-INITIO; ENERGY; EXCHANGE; ATOMS; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, ; Multidisciplinary; Physics, Atomic, Molecular & Chemical
Abstract
The Influence of ligands on electronic structure of small gold clusters. (Au(2), Au(4)) has been investigated by density functional theory (DFT). Specifically, we study the effect of bonding of four donor ligands (NH(3), NMe(3), PH(3), and PMe(3)) on cluster geometries and energetics in gas phase and in solution. Performance-of five generations of OFT functionals and five different basis sets is assessed. Our results benchmark the importance of the OFT functional model and polarization functions in the basis set for calculations of ligated gold cluster systems. We obtain NMe(3) approximate to NH(3) < PH(3) < PMe(3) order of ligand binding energies and observe shallow potential energy surfaces in all molecules. The latter is likely to lead to a conformational freedom in larger clusters with many ligands in solution at ambient conditions. The study suggests appropriate quantum-chemical methodology to reliably model small noble metal clusters in a realistic ligand environment typically present in experiments.
Journal Title
Journal of Physical Chemistry Letters
Volume
1
Issue/Number
6
Publication Date
1-1-2010
Document Type
Article
DOI Link
Language
English
First Page
927
Last Page
931
WOS Identifier
ISSN
1948-7185
Recommended Citation
"DFT Study of Ligand Binding to Small Gold Clusters" (2010). Faculty Bibliography 2010s. 191.
https://stars.library.ucf.edu/facultybib2010/191
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu