Title
Cooperation in Wireless Networks with Unreliable Channels
Abbreviated Journal Title
IEEE Trans. Commun.
Keywords
Wireless networks; cooperation enforcement; evolutionary game theory; sequential equilibrium; imperfect observation; collusion resistance; AD HOC NETWORKS; REPEATED GAMES; EQUILIBRIA; STRATEGIES; Engineering, Electrical & Electronic; Telecommunications
Abstract
In a distributed wireless system, multiple network nodes behave cooperatively towards a common goal. An important challenge in such a scenario is to attain mutual cooperation. This paper provides a non-cooperative game theoretic solution to enforce cooperation in wireless networks in the presence of channel noise. We focus on one-hop information exchange and model the packet forwarding process as a hidden action game with imperfect private monitoring. We propose a state machine based strategy to reach Nash Equilibrium. The equilibrium is proved to be a sequential one with carefully designed system parameters. Furthermore, we extend our discussion to a general wireless network scenario by considering how cooperation can prevail over collusion using evolutionary game theory. The simulation results are provided to back our analysis. In particular, network throughput performance is measured with respect to parameters like channel loss probability, route hop count, and mobility. Results suggest that the performance due to our proposed strategy is in close agreement with that of unconditionally cooperative nodes. Simulation results also reveal how the convergence of cooperation enforcement is affected by initial population share and channel unreliability.
Journal Title
Ieee Transactions on Communications
Volume
59
Issue/Number
10
Publication Date
1-1-2011
Document Type
Article
Language
English
First Page
2808
Last Page
2817
WOS Identifier
ISSN
0090-6778
Recommended Citation
"Cooperation in Wireless Networks with Unreliable Channels" (2011). Faculty Bibliography 2010s. 2074.
https://stars.library.ucf.edu/facultybib2010/2074
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu