Title
Trajectory Control of Miniature Helicopters Using a Unified Nonlinear Optimal Control Technique
Abbreviated Journal Title
J. Dyn. Syst. Meas. Control-Trans. ASME
Keywords
AUTONOMOUS HELICOPTERS; DESIGN; GUIDANCE; MODEL; Automation & Control Systems; Instruments & Instrumentation
Abstract
It is always a challenge to design a real-time optimal full flight envelope controller for a miniature helicopter due to the nonlinear, underactuated, uncertain, and highly coupled nature of its dynamics. This paper integrates the control of translational, rotational, and flapping motions of a simulated miniature aerobatic helicopter in one unified optimal control framework. In particular, a recently developed real-time nonlinear optimal control method, called the theta-D technique, is employed to solve the resultant challenging problem considering the full nonlinear dynamics without gain scheduling techniques and timescale separations. The uniqueness of the theta-D method is its ability to obtain an approximate analytical solution to the Hamilton-Jacobi-Bellman equation, which leads to a closed-form suboptimal control law. As a result, it can provide a great advantage in real-time implementation without a high computational load. Two complex trajectory tracking scenarios are used to evaluate the control capabilities of the proposed method in full flight envelope. Realistic uncertainties in modeling parameters and the wind gust condition are included in the simulation for the purpose of demonstrating the robustness of the proposed control law. [DOI: 10.1115/1.4004060]
Journal Title
Journal of Dynamic Systems Measurement and Control-Transactions of the Asme
Volume
133
Issue/Number
6
Publication Date
1-1-2011
Document Type
Article
DOI Link
Language
English
First Page
14
WOS Identifier
ISSN
0022-0434
Recommended Citation
"Trajectory Control of Miniature Helicopters Using a Unified Nonlinear Optimal Control Technique" (2011). Faculty Bibliography 2010s. 2123.
https://stars.library.ucf.edu/facultybib2010/2123
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu