Authors

N. A. Yacob; A. Ishak; I. Pop;K. Vajravelu

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Nanoscale Res. Lett.

Keywords

HEAT-TRANSFER ENHANCEMENT; SHRINKING SHEET; NATURAL-CONVECTION; VERTICAL; SURFACE; MOVING SURFACE; FLAT-PLATE; BLASIUS; EQUATIONS; FLUID; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied

Abstract

The problem of a steady boundary layer shear flow over a stretching/shrinking sheet in a nanofluid is studied numerically. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, before being solved numerically by a Runge-Kutta-Fehlberg method with shooting technique. Two types of nanofluids, namely, Cu-water and Ag-water are used. The effects of nanoparticle volume fraction, the type of nanoparticles, the convective parameter, and the thermal conductivity on the heat transfer characteristics are discussed. It is found that the heat transfer rate at the surface increases with increasing nanoparticle volume fraction while it decreases with the convective parameter. Moreover, the heat transfer rate at the surface of Cu-water nanofluid is higher than that at the surface of Ag-water nanofluid even though the thermal conductivity of Ag is higher than that of Cu.

Journal Title

Nanoscale Research Letters

Volume

6

Publication Date

1-1-2011

Document Type

Article

Language

English

First Page

7

WOS Identifier

WOS:000292288900010

ISSN

1931-7573

Share

COinS