Title
Using pyrosequencing and quantitative PCR to analyze microbial communities
Abbreviated Journal Title
Front. Environ. Sci. Eng. China
Keywords
polymerase chain reaction (PCR); microbial communities; pyrosequencing; gut; microbial fuel cell; sludge; POLYMERASE-CHAIN-REACTION; RESPIRING BACTERIA ARB; FUEL-CELLS; RARE; BIOSPHERE; BIOFILM ANODE; RIBOSOMAL-RNA; DIVERSITY; MICROORGANISMS; CONVERSION; SAMPLES; Engineering, Environmental; Environmental Sciences
Abstract
New high-throughput technologies continue to emerge for studying complex microbial communities. In particular, massively parallel pyrosequencing enables very high numbers of sequences, providing a more complete view of community structures and a more accurate inference of the functions than has been possible just a few years ago. In parallel, quantitative real-time polymerase chain reaction (QPCR) allows quantitative monitoring of specific community members over time, space, or different environmental conditions. In this review, the principles of these two methods and their complementary applications in studying microbial ecology in bioenvironmental systems are discussed. The parallel sequencing of amplicon libraries and using barcodes to differentiate multiple samples in a pyrosequencing run are explained. The best procedures and chemistries for QPCR amplifications are also described and advantages of applying automation to increase accuracy are addressed. Three examples in which pyrosequencing and QPCR were used together to define and quantify members of microbial communities are provided: in the human large intestine, in a methanogenic digester whose sludge was made more bioavailable by a high-voltage pretreatment, and on the biofilm anode of a microbial electrolytic cell. The key findings in these systems and how both methods were used in concert to achieve those findings are highlighted.
Journal Title
Frontiers of Environmental Science & Engineering in China
Volume
5
Issue/Number
1
Publication Date
1-1-2011
Document Type
Review
Language
English
First Page
21
Last Page
27
WOS Identifier
ISSN
1673-7415
Recommended Citation
"Using pyrosequencing and quantitative PCR to analyze microbial communities" (2011). Faculty Bibliography 2010s. 2164.
https://stars.library.ucf.edu/facultybib2010/2164
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu