Title
Knowledge Discovery Through Experiential Learning From Business and Other Contemporary Data Sources: A Review and Reappraisal
Abbreviated Journal Title
Inf. Syst. Manage.
Keywords
knowledge discovery in databases; data mining; methods; tools; methodologies; experiential learning; applications; review; FUZZY INFERENCE SYSTEM; CLASSIFICATION; NETWORKS; Computer Science, Information Systems
Abstract
Every day massive amount of data is generated, collected, and stored in information repositories such as databases and data warehouses. Current information technology is sufficiently mature and powerful to store any amount of raw data in an organized manner. However, finding useful patterns, trends, rules, correlations, and deviations in large amount of data, and/or making meaningful predictions from it still remains one of the main challenges of the information era. The more data one has, the more difficult it is to analyze and draw meaningful conclusions. Knowledge discovery in databases (KDD) and data mining (DM) is a field, which uses computer-based and analytic technologies to efficiently extract intelligence from data that humans need. In this article, we review the process of knowledge discovery in databases, and describe selected methodologies, methods and tools, tasks, basic learning paradigms, and applications for knowledge generation by computer learning from data instances. We also examine the current trends in the field with respect to the data types mined, data mining methods used, classes of data mining applications, as well as the data mining software used.
Journal Title
Information Systems Management
Volume
28
Issue/Number
3
Publication Date
1-1-2011
Document Type
Article
Language
English
First Page
258
Last Page
274
WOS Identifier
ISSN
1058-0530
Recommended Citation
"Knowledge Discovery Through Experiential Learning From Business and Other Contemporary Data Sources: A Review and Reappraisal" (2011). Faculty Bibliography 2010s. 2181.
https://stars.library.ucf.edu/facultybib2010/2181
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu