Title
Dynamical criteria for rogue waves in nonlinear Schrodinger models
Abbreviated Journal Title
Nonlinearity
Keywords
DEEP-WATER WAVES; MODULATIONAL INSTABILITY; FREAK-WAVES; EQUATION; Mathematics, Applied; Physics, Mathematical
Abstract
We investigate rogue waves in deep water in the framework of the nonlinear Schrodinger (NLS) and Dysthe equations. Amongst the homoclinic orbits of unstable NLS Stokes waves, we seek good candidates to model actual rogue waves. In this paper we propose two selection criteria: stability under perturbations of initial data, and persistence under perturbations of the NLS model. We find that requiring stability selects homoclinic orbits of maximal dimension. Persistence under (a particular) perturbation selects a homoclinic orbit of maximal dimension all of whose spatial modes are coalesced. These results suggest that more realistic sea states, described by JONSWAP power spectra, may be analyzed in terms of proximity to NLS homoclinic data. In fact, using the NLS spectral theory, we find that rogue wave events in random oceanic sea states are well predicted by proximity to homoclinic data of the NLS equation.
Journal Title
Nonlinearity
Volume
25
Issue/Number
12
Publication Date
1-1-2012
Document Type
Article
Language
English
First Page
R99
Last Page
R116
WOS Identifier
ISSN
0951-7715
Recommended Citation
"Dynamical criteria for rogue waves in nonlinear Schrodinger models" (2012). Faculty Bibliography 2010s. 2347.
https://stars.library.ucf.edu/facultybib2010/2347
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu