Title
Optimal expansion of a drinking water infrastructure system with respect to carbon footprint, cost-effectiveness and water demand
Abbreviated Journal Title
J. Environ. Manage.
Keywords
Water supply; Multiobjective programming; Systems analysis; Regionalization; Carbon footprint; Adaptive water resources management; LIFE-CYCLE ASSESSMENT; SUSTAINABLE DEVELOPMENT; CAPACITY EXPANSION; MANAGEMENT; INDICATORS; FRAMEWORK; AGRICULTURE; Environmental Sciences
Abstract
Urban water infrastructure expansion requires careful long-term planning to reduce the risk from climate change during periods of both economic boom and recession. As part of the adaptation management strategies, capacity expansion in concert with other management alternatives responding to the population dynamics, ecological conservation, and water management policies should be systematically examined to balance the water supply and demand temporally and spatially with different scales. To mitigate the climate change impact, this practical implementation often requires a multiobjective decision analysis that introduces economic efficiencies and carbon-footprint matrices simultaneously. The optimal expansion strategies for a typical water infrastructure system in South Florida demonstrate the essence of the new philosophy. Within our case study, the multiobjective modeling framework uniquely features an integrated evaluation of transboundary surface and groundwater resources and quantitatively assesses the interdependencies among drinking water supply, wastewater reuse, and irrigation water permit transfer as the management options expand throughout varying dimensions. With the aid of a multistage planning methodology over the partitioned time horizon, such a systems analysis has resulted in a full-scale screening and sequencing of multiple competing objectives across a suite of management strategies. These strategies that prioritize 20 options provide a possible expansion schedule over the next 20 years that improve water infrastructure resilience and at low life-cycle costs. The proposed method is transformative to other applications of similar water infrastructure systems elsewhere in the world. (C) 2012 Elsevier Ltd. All rights reserved.
Journal Title
Journal of Environmental Management
Volume
110
Publication Date
1-1-2012
Document Type
Article
Language
English
First Page
194
Last Page
206
WOS Identifier
ISSN
0301-4797
Recommended Citation
"Optimal expansion of a drinking water infrastructure system with respect to carbon footprint, cost-effectiveness and water demand" (2012). Faculty Bibliography 2010s. 2379.
https://stars.library.ucf.edu/facultybib2010/2379
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu