Title
Critical assessment of classical potentials for MgSiO3 perovskite with application to thermal conductivity calculations
Abbreviated Journal Title
Phys. Earth Planet. Inter.
Keywords
Thermal conductivity; Classical potentials; Magnesium silicate; Boltzmann transport equation; EARTHS LOWER MANTLE; V-T EQUATION; MOLECULAR-DYNAMICS SIMULATION; LATTICE-DYNAMICS; COMPUTER-SIMULATION; ELASTIC PROPERTIES; HIGH-PRESSURE; SINGLE-CRYSTAL; THERMOELASTIC PROPERTIES; INTERATOMIC; POTENTIALS; Geochemistry & Geophysics
Abstract
Atomistic simulations using classical empirical potentials are an invaluable tool for studying minerals in lower-mantle conditions. Here we systematically survey literature potentials for MgSiO3 perovskite. The value of the present work is two-fold: (i) a systematic data set for a large number of potentials is determined, reproducing previous results where they exist and filling in gaps where they do not, and (ii) the first predictions using these potentials for the thermal-transport properties critical to geothermal models is provided. We focus particularly on the thermal expansion and the thermal-transport properties, both of which probe the anharmonic structure of the potential. Simple two-body potentials with the partially-ionic charges are found to be the most successful representation of MgSiO3 perovskite properties. The addition of a shell model or many-body interactions does not lead to any systematic improvement. (C) 2012 Elsevier B.V. All rights reserved.
Journal Title
Physics of the Earth and Planetary Interiors
Volume
210
Publication Date
1-1-2012
Document Type
Article
Language
English
First Page
75
Last Page
89
WOS Identifier
ISSN
0031-9201
Recommended Citation
"Critical assessment of classical potentials for MgSiO3 perovskite with application to thermal conductivity calculations" (2012). Faculty Bibliography 2010s. 2399.
https://stars.library.ucf.edu/facultybib2010/2399
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu