Title
Understanding the phase equilibrium and irradiation effects in Fe-Zr diffusion couples
Abbreviated Journal Title
J. Nucl. Mater.
Keywords
Materials Science, Multidisciplinary; Nuclear Science & Technology; Mining & Mineral Processing
Abstract
We have studied the radiation effects in Fe-Zr diffusion couples, formed by thermal annealing of a mechanically bonded binary system at 850 degrees C for 15 days. After irradiation with 3.5 MeV Fe ions at 600 degrees C, a cross sectional specimen was prepared by using a focused-ion-beam-based lift out technique and was characterized using scanning/transmission electron microscopy, selected-area diffraction and X-ray energy dispersive spectroscopy analyses. Comparison studies were performed in localized regions within and beyond the ion projected range and the following observations were obtained: (1) the interaction layer consists of FeZr3, FeZr2, Fe2Zr, and Fe23Zr6; (2) large Fe23Zr6 particles with smaller core particles of Zr-rich Fe2Zr are found within the alpha-Fe matrix; (3) Zr diffusion is significantly enhanced in the ion bombarded region, leading to the formation of an Fe-Zr compound; (4) grains located within the interaction layer are much smaller in the ion bombarded region and are associated with new crystal growth and nanocrystal formation; and (5) large alpha-Fe particles form on the surface of the Fe side, but the particles are limited to the region close to the interaction layer. These studies reveal the complexity of the interaction phase formation in an Fe-Zr binary system and the accelerated microstructural changes under irradiation. (c) 2012 Elsevier B.V. All rights reserved.
Journal Title
Journal of Nuclear Materials
Volume
432
Issue/Number
1-3
Publication Date
1-1-2013
Document Type
Review
Language
English
First Page
205
Last Page
211
WOS Identifier
ISSN
0022-3115
Recommended Citation
"Understanding the phase equilibrium and irradiation effects in Fe-Zr diffusion couples" (2013). Faculty Bibliography 2010s. 2577.
https://stars.library.ucf.edu/facultybib2010/2577
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu