Title
HYPERGEOMETRIC ORIGINS OF DIOPHANTINE PROPERTIES ASSOCIATED WITH THE ASKEY SCHEME
Abbreviated Journal Title
Proc. Amer. Math. Soc.
Keywords
Generalized hypergeometric series; basic hypergeometric series; summation theorems; ORTHOGONAL POLYNOMIALS; TRIDIAGONAL MATRICES; Mathematics, Applied; Mathematics
Abstract
The "Diophantine" properties of the zeros of certain polynomials in the Askey scheme, recently discovered by Calogero and his collaborators, are explained, with suitably chosen parameter values, in terms of the summation theorem of hypergeometric series. Here the Diophantine property refers to integer valued zeros. It turns out that the same procedure can also be applied to polynomials arising from I lie basic hypergeometric series. We found, with suitably chosen parameters and certain q-analogues of the summation theorems. zeros of these polynomials explicitly which are no longer integer valued. This goes beyond the results obtained by the authors previously mentioned.
Journal Title
Proceedings of the American Mathematical Society
Volume
138
Issue/Number
3
Publication Date
1-1-2010
Document Type
Article
Language
English
First Page
943
Last Page
951
WOS Identifier
ISSN
0002-9939
Recommended Citation
"HYPERGEOMETRIC ORIGINS OF DIOPHANTINE PROPERTIES ASSOCIATED WITH THE ASKEY SCHEME" (2010). Faculty Bibliography 2010s. 26.
https://stars.library.ucf.edu/facultybib2010/26
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu