Title

Hydrogen Production via Photolytic Oxidation of Aqueous Sodium Sulfite Solutions

Authors

Authors

C. P. Huang; C. A. Linkous; O. Adebiyi;A. T-Raissi

Comments

Authors: contact us about adding a copy of your work at STARS@ucf.edu

Abbreviated Journal Title

Environ. Sci. Technol.

Keywords

COPPER-ION; SUSPENSIONS; Engineering, Environmental; Environmental Sciences

Abstract

Sulfur dioxide (SO(2)) emission from coal-burning power plants and refinery operations has been implicated as a cause of acid rain and other air pollution related problems. The conventional treatment of SO(2)-contaminated air consists of two steps: SO(2) absorption using an aqueous sodium hydroxide solution, forming aqueous sodium sulfite (Na(2)SO(3)), and Na(2)SO(3) oxidation via air purging to produce sodium sulfate (Na(2)SO(4)). In this process, the potential energy of SO(2) is lost. This paper presents a novel ultraviolet (UV) photolytic process for production of hydrogen from aqueous Na(2)SO(3) solutions. The results show that the quantum efficiency of hydrogen production can reach 14.4% under illumination from a low pressure mercury lamp. The mechanism occurs via two competing reaction pathways that involve oxidation of SO(3)(2-) to SO(4)(2-) directly and through the dithionate (S(2)O(6)(2-)) ion intermediate. The first route becomes dominant once a photostationary state for S(2)O(6)(2-) is established. The initial pH of Na(2)SO(3) solution plays an important role in determining both the hydrogen production rate and the final products of the photolytic oxidation. At initial solution pH of 9.80 Na(2)SO(3) photo-oxidation generates Na(2)SO(4) as the final reaction product, while Na(2)S(2)O(6) is merely a reaction intermediate. The highest hydrogen production rate occurs when the initial solution pH is 7.55. Reduction in the initial solution pH to 5.93 results in disproportionation of HSO(3)(-) to elemental sulfur and SO(4)(2-) but no hydrogen production.

Journal Title

Environmental Science & Technology

Volume

44

Issue/Number

13

Publication Date

1-1-2010

Document Type

Article

Language

English

First Page

5283

Last Page

5288

WOS Identifier

WOS:000279304700073

ISSN

0013-936X

Share

COinS