Title
Multilevel data and Bayesian analysis in traffic safety
Abbreviated Journal Title
Accid. Anal. Prev.
Keywords
Road safety; Crash prediction models; Bayesian hierarchical models; Multilevel data; Spatiotemporal data; MOTOR-VEHICLE CRASHES; POISSON-GAMMA MODELS; SIGNALIZED INTERSECTIONS; ACCIDENT FREQUENCIES; RURAL INTERSECTIONS; REGRESSION-MODEL; GEOMETRIC; DESIGN; EMPIRICAL BAYES; SEVERITY; PREDICTION; Ergonomics; Public, Environmental & Occupational Health; Social; Sciences, Interdisciplinary; Transportation
Abstract
Background: Traditional crash prediction models, such as generalized linear regression model, are incapable of taking into account multilevel data structure. Therefore they suffer from a common underlying limitation that each observation (e.g. a crash or a vehicle involvement) in the estimation procedure corresponds to an individual situation in which the residuals exhibit independence. Problem: However, this "independence" assumption may often not hold true since multilevel data structures exist extensively because of the traffic data collection and clustering process. Disregarding the possible within-group correlations may lead to production of models with unreliable parameter estimates and statistical inferences. Proposed theory: In this paper, a 5 x ST-level hierarchy is proposed to represent the general framework of multilevel data structures in traffic safety, i.e. [Geographic region level - Traffic site level - Traffic crash level - Driver-vehicle unit level - Occupant level] x Spatiotemporal level. The involvement and emphasis for different sub-groups of these levels depend on different research purposes and also rely on the heterogeneity examination on crash data employed. To properly accommodate the potential cross-group heterogeneity and spatiotemporal correlation due to the multilevel data structure, a Bayesian hierarchical approach that explicitly specifies multilevel structure and reliably yields parameter estimates is introduced and recommended. Case studies: Using Bayesian hierarchical models, the results from several case studies are highlighted to show the improvements on model fitting and predictive performance over traditional models by appropriately accounting for the multilevel data structure. (c) 2010 Elsevier Ltd. All rights reserved.
Journal Title
Accident Analysis and Prevention
Volume
42
Issue/Number
6
Publication Date
1-1-2010
Document Type
Article
Language
English
First Page
1556
Last Page
1565
WOS Identifier
ISSN
0001-4575
Recommended Citation
"Multilevel data and Bayesian analysis in traffic safety" (2010). Faculty Bibliography 2010s. 278.
https://stars.library.ucf.edu/facultybib2010/278
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu