Title
Geometric and electronic structures of the His-Fe(IV)=O and His-Fe(IV)-Tyr hemes of MauG
Abbreviated Journal Title
J. Biol. Inorg. Chem.
Keywords
MauG; Fe K-edge X-ray absorption spectroscopy; High-valence Fe; Density; functional theory; Heme; CYTOCHROME-C PEROXIDASE; TRYPTOPHAN TRYPTOPHYLQUINONE BIOSYNTHESIS; DENSITY-FUNCTIONAL THEORY; ABSORPTION FINE-STRUCTURE; GAUSSIAN-BASIS; SETS; METHYLAMINE DEHYDROGENASE; COMPOUND-I; K-EDGE; OXYGEN ACTIVATION; SPECTROSCOPIC EVIDENCE; Biochemistry & Molecular Biology; Chemistry, Inorganic & Nuclear
Abstract
Biosynthesis of the tryptophan tryptophylquinone (TTQ) cofactor activates the enzyme methylamine dehydrogenase. The diheme enzyme MauG catalyzes O-atom insertion and cross-linking of two Trp residues to complete TTQ synthesis. Solution optical and Mossbauer spectroscopic studies have indicated that the reactive form of MauG during turnover is an unusual bisFe(IV) intermediate, which has been formulated as a His-ligated ferryl heme [Fe(IV)=O] (heme A), and an Fe(IV) heme with an atypical His/Tyr ligation (heme B). In this study, Fe K-edge X-ray absorption spectroscopy and extended X-ray absorption fine structure studies have been combined with density functional theory (DFT) and time-dependent DFT methods to solve the geometric and electronic structures of each heme site in the MauG bisFe(IV) redox state. The ferryl heme site (heme A) is compared with the well-characterized compound I intermediate of cytochrome c peroxidase. Heme B is unprecedented in biology, and is shown to have a six-coordinate, S = 1 environment, with a short (1.85-) Fe-O(Tyr) bond. Experimentally calibrated DFT calculations are used to reveal a strong covalent interaction between the Fe and the O(Tyr) ligand of heme B in the high-valence form. A large change in the Fe-O(Tyr) bond distance on going from Fe(II) (2.02 ) to Fe(III) (1.89 ) to Fe(IV) (1.85 ) signifies increasing localization of spin density on the tyrosinate ligand upon sequential oxidation of heme B to Fe(IV). As such, O(Tyr) plays an active role in attaining and stabilizing the MauG bisFe(IV) redox state.
Journal Title
Journal of Biological Inorganic Chemistry
Volume
17
Issue/Number
8
Publication Date
1-1-2012
Document Type
Article
Language
English
First Page
1241
Last Page
1255
WOS Identifier
ISSN
0949-8257
Recommended Citation
"Geometric and electronic structures of the His-Fe(IV)=O and His-Fe(IV)-Tyr hemes of MauG" (2012). Faculty Bibliography 2010s. 2798.
https://stars.library.ucf.edu/facultybib2010/2798
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu