Title
Novel Copper (Cu) Loaded Core-Shell Silica Nanoparticles with Improved Cu Bioavailability: Synthesis, Characterization and Study of Antibacterial Properties
Abbreviated Journal Title
J. Biomed. Nanotechnol.
Keywords
Core-Shell Nanoparticle; Copper Loaded Silica; Antibacterial; Sol-Gel; Copper Biocide; RESISTANT STAPHYLOCOCCUS-AUREUS; BIOCIDES; ENVIRONMENT; PARTICLES; SURFACES; GEL; COMPOSITES; IMPACT; Nanoscience & Nanotechnology; Medicine, Research & Experimental
Abstract
We report synthesis of a novel core shell silica based antimicrobial nanoparticles where the silica shell has been engineered to accommodate copper (Cu). Synthesis of the core shell Cu-silica nanoparticle (C-S CuSiO2NP) involves preparation of base-hydrolyzed Stober silica "seed" particles first, followed by the acid-catalyzed seeded growth of the Cu-silica shell layer around the core. The Scanning Electron Microscopy (SEM) and the Transmission Electron Microscopy (TEM) measured the seed particle size to be similar to 380 nm and the shell thickness to be similar to 35 nm. The SEM particle characterization confirms formation of highly monodispersed particles with smooth surface morphology. Characterization of particle size distribution in solution by Dynamic Light Scattering (DLS) technique was fairly consistent with the electron microscopy results. Loading of Cu to nanoparticles was confirmed by the SEM-Energy Dispersive X-Ray Spectroscopy (EDS) and Atomic Absorption Spectroscopy (AAS). The Cu loading was estimated to be 0.098 mu g of metallic copper per mg of C-S CuSiO2NP material by the AAS technique. Antibacterial efficacy of C-S CuSiO2NP was evaluated against E.coli and B.subtilis using Cu hydroxide ("Insoluble" Cu compound, sub-micron size particles) as positive control and silica "seed" particles (without Cu loading) as negative control. Bacterial growth in solution was measured against different concentrations of C-S CuSiO2NP to determine the Minimum Inhibitory Concentration (MIC) value. The estimated MIC values were 2.4 mu g metallic Cu/mL for both E.coli and B.subtilis. Bac-light fluorescence microscopy based assay was used to count relative population of the live and dead bacteria cells. Antibacterial study clearly shows that C-S CuSiO2NP is more effective than insoluble Cu hydroxide particles at equivalent metallic Cu concentration, suggesting improvement of Cu bioavailability (i.e., more soluble Cu) in C-S CuSiO2NP material due to its core shell design.
Journal Title
Journal of Biomedical Nanotechnology
Volume
8
Issue/Number
4
Publication Date
1-1-2012
Document Type
Article
Language
English
First Page
558
Last Page
566
WOS Identifier
ISSN
1550-7033
Recommended Citation
"Novel Copper (Cu) Loaded Core-Shell Silica Nanoparticles with Improved Cu Bioavailability: Synthesis, Characterization and Study of Antibacterial Properties" (2012). Faculty Bibliography 2010s. 2997.
https://stars.library.ucf.edu/facultybib2010/2997
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu