Title
Stability of Platinum Nanoparticles Supported on SiO2/Si(111): A High-Pressure X-ray Photoelectron Spectroscopy Study
Abbreviated Journal Title
ACS Nano
Keywords
platinum nanoparticle; inverse micelle; volatile PtOx; high-pressure; X-ray photoelectron spectroscopy; HP-XPS; atomic force microscopy; AFM; CATALYST DEACTIVATION; DISPERSION CHANGES; THERMAL-STABILITY; MODEL; CATALYST; THIN-FILMS; OXYGEN; SIZE; OXIDATION; OXIDES; PARTICLES; Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience &; Nanotechnology; Materials Science, Multidisciplinary
Abstract
The stability of Pt nanoparticles (NPs) supported on ultrathin SiO2 films on Si(111) was investigated in situ under H-2 and O-2 (0.5 Torr) by high-pressure X-ray photoelectron spectroscopy (HP-XPS) and ex situ by atomic force microscopy (AFM). No indication of sintering was observed up to 600 degrees C in both reducing and oxidizing environments for size-selected Pt NPs synthesized by inverse micelle encapsulation. However, HP-XPS revealed a competing effect of volatile PtOx desorption from the Pt NPs (similar to 2 and similar to 4 nm NP sizes) at temperatures above 450 degrees C in the presence of 0.5 Tort of O-2. Under oxidizing conditions, the entire NPs were oxidized, although with no indication of a PtO2 phase, with XPS binding energies better matching PtO. The stability of catalytic NPs in hydrogenation and oxidation reactions is of great importance due to the strong structure sensitivity observed in a number of catalytic processes of industrial relevance. An optimum must be found between the maximization of the surface active sites and metal loading (i.e., minimization of the NP size), combined with the maximization of their stability, which, as it will be shown here, is strongly dependent on the reaction environment.
Journal Title
Acs Nano
Volume
6
Issue/Number
12
Publication Date
1-1-2012
Document Type
Article
DOI Link
Language
English
First Page
10743
Last Page
10749
WOS Identifier
ISSN
1936-0851
Recommended Citation
"Stability of Platinum Nanoparticles Supported on SiO2/Si(111): A High-Pressure X-ray Photoelectron Spectroscopy Study" (2012). Faculty Bibliography 2010s. 3153.
https://stars.library.ucf.edu/facultybib2010/3153
Comments
Authors: contact us about adding a copy of your work at STARS@ucf.edu